Magneto-convective flow through a porous enclosure with Hall current and thermal radiation effects: numerical study

نویسندگان

چکیده

This paper reports the numerical study of magnetohydrodynamic radiative-convective flow in a square cavity containing porous medium with Hall currents. is relent to hydromagnetic fuel cell design and thermofluidic dynamics complex magnetic liquid fabrication enclosures. The governing equations this fluid system are solved by finite-difference vorticity stream function approach executed MATLAB software. A detailed parametric investigation impact Rayleigh number (thermal buoyancy parameter), Hartman (magnetic body force Darcy (permeability parameter radiation on streamline, temperature contours, local Nusselt along hot wall mid-section velocity profiles computed. Validation previous special cases literature included. current radiative effects found significantly modify characteristics. From results, it that field suppresses natural convection only for small ratios. But, larger ratio, effective suppressing thermal convective flow.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on free convective heat and mass transfer flow through a highly porous medium with radiation, chemical reaction and Soret effects

The paper addresses the effects of Soret on unsteady free convection flow of a viscous incompressible fluid through a porous medium with high porosity bounded by a vertical infinite moving plate under the influence of thermal radiation, chemical reaction, and heat source. The fluid is considered to be gray, absorbing, and emitting but non-scattering medium, and Rosseland approximation is consid...

متن کامل

Unsteady MHD Couette-Hartmann flow through a porous medium bounded by porous plates with Hall current, ion-slip and Coriolis ‎effects

Effects of Hall current, ion-slip and Coriolis force on unsteady MHD Couette-Hartmann flow of a viscous incompressible electrically conducting fluid through a porous medium bounded by porous plates in the presence of a uniform transverse magnetic field which is either fixed relative to the fluid or to the moving porous plate is investigated using Laplace transform technique. The expressions for...

متن کامل

Flow Over an Exponentially Stretching Porous Sheet with Cross-diffusion Effects and Convective Thermal Conditions

This article investigates the influence of cross-diffusion on the viscous fluid flow over a porous sheet stretching exponentially by applying the convective thermal conditions. Velocity slip at the boundary is considered. The numerical solutions to the governing equations are evaluated using successive linearisation procedure and Chebyshev collocation method. It is observed from this study that...

متن کامل

Hydromagnetic Couette flow of class-II and heat transfer through a porous medium in a rotating system with Hall effects

Steady hydromagnetic Couette flow of class-II of a viscous, incompressible and electrically conducting fluid through a porous medium in a rotating system taking Hall current into account is investigated. Heat transfer characteristics of the fluid flow are considered taking viscous and Joule dissipations into account. It is noticed that there exists flow separation at the moving plate in the sec...

متن کامل

Rotating MHD Convective Flow of Oldroyd- BFluid Through a Porous Medium in a Vertical Porous Channel with Thermal Radiation

An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of anOldroyd-B, incompressible and electrically conducting fluid through a porous medium bounded within two infinite vertical parallel porous plates is carried out. The fluid is injected with constant velocity through the stationary porous plate and simultaneously sucked with same constant velocity through the other oscilla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Physical Journal-special Topics

سال: 2022

ISSN: ['1951-6355', '1951-6401']

DOI: https://doi.org/10.1140/epjs/s11734-022-00592-9